跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) LLM(84) angular(83) 大语言模型(67) 人工智能(56) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) 深度学习(20) Web技术(19) 精选资源(19) Java(19) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) LLMOps(11) 聊天机器人(11) 安卓(11) ChatGPT(10) typescript(10) 资料精选(10) mlops(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) RAG(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) 安全(9) 智能体(8) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 数据科学(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) whisper(6) Prisma(6) 隐私保护(6) 提示工程(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 生成式AI(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) 数据分析(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【Angular】Angular:2023年最佳实践

Angular开发以其健壮性、可扩展性和性能而闻名,因此在web开发公司和开发人员中很受欢迎。因此,在Angular开发中采用最佳实践可以带来一致性、代码可读性、性能、可维护性和可扩展性。

它可以帮助团队成员更有效地合作,减少出现错误的机会,并确保代码库能够支持不断发展的需求。本文的目标是列出Angular开发人员应该遵循的最佳实践,以确保他们的应用程序获得高水平的接受和成功。

Angular CLI的定期使用

Angular CLI是一个非常强大的工具。强烈建议您安装并尽可能多地使用它。使用预定义的命令,而不是手工完成所有操作,非常节省时间。列出一些常用的命令

【ChatGPT】使用ChatGPT汇总数据

熟悉data.world的人都知道,该公司的使命是建立世界上最有意义、最协作、最丰富的数据资源。data.world完成这项任务的一种方法是提供一个社区数据门户,当你创建一个免费帐户并登录data.worlds时,你会看到这个门户。目前,社区网站上有超过15万个开放数据资源,包括美国人口普查局、美国国家航空航天局和data.gov.uk等来源。

我在另一篇博客中概述了你如何成为这个数据资源的策展人之一。如果你尝试过,你就会知道,要想真正让别人使用你的数据,你需要的不仅仅是将电子表格上传到data.world这样的托管和查询服务,让你的数据公平,但这只是一个开始。你需要做的事情之一是描述你的数据,也许为它制作一个数据字典,甚至可能向数据的潜在用户做广告。

到目前为止,ChatGPT能够在所有这些任务中提供帮助并不奇怪。作为一个例子,我使用ChatGPT提供了先正达提供的数据摘要,以跟踪其良好增长计划的进展。

先正达是一家国际农药公司。他们的业务是提供化学品和专业知识,帮助世界各地的农民生产粮食。早在2014年左右,先正达就推出了“良好增长计划”,这一系列承诺不仅旨在通过销售化学品赚钱,还旨在提高世界各地粮食生产的效率和可持续性。

【LLM】LangChian自动评估( Auto-Evaluator )机会

Auto-Evaluator Opportunities

编者按:这是兰斯·马丁的一篇客座博客文章。

TL;DR

我们最近开源了一个自动评估工具,用于对LLM问答链进行评分。我们现在发布了一个开源、免费的托管应用程序和API,以扩展可用性。下面我们将讨论一些进一步改进的机会。

上下文

文档问答是一个流行的LLM用例。LangChain可以轻松地将LLM组件(例如,模型和检索器)组装成支持问答的链:输入文档被分割成块并存储在检索器中,在给定用户问题的情况下检索相关块并传递给LLM以合成答案。

问题

质量保证系统的质量可能有很大差异;我们已经看到由于特定的参数设置而产生幻觉和回答质量差的情况。但是,(1)评估答案质量和(2)使用此评估来指导改进的QA链设置(例如,块大小、检索到的文档数)或组件(例如,模型或检索器选择)并不总是显而易见的。

【LangChain 】LangChain 计划和执行代理

TL;DR:我们正在引入一种新型的代理执行器,我们称之为“计划和执行”。这是为了与我们以前支持的代理类型形成对比,我们称之为“Action”代理。计划和执行代理在很大程度上受到了BabyAGI和最近的计划和解决论文的启发。我们认为Plan and Execute非常适合更复杂的长期规划,但代价是需要调用更多的语言模型。我们正在将其初始版本放入实验模块,因为我们预计会有快速的变化。

链接:

到目前为止,LangChain中的所有代理都遵循ReAct文件开创的框架。让我们称之为“行动特工”。这些算法可以大致用以下伪代码表示:

【LLM】利用并行LLM Agent Actor Trees释放AI协作的力量

编者按:以下是赛勒斯在 Shaman AI的客座博客文章。我们使用客座博客文章来突出有趣和新颖的应用程序,当然是这样。最近有很多关于经纪人的讨论,但大多数都是围绕一个经纪人展开的。如果涉及多个代理,则会依次调用它们。这部作品很新颖,因为它突破了这一界限,探索了多个平行行动的代理。

重要链接:

介绍

近年来,人工智能领域取得了重大进展,人工智能代理现在能够处理复杂的任务。尽管取得了这些进展,但有效地并行和协调多个人工智能代理协同工作仍然是一个挑战。引入Agent Actors-这是一个突破性的解决方案,使开发人员能够创建和管理人工智能代理树,这些代理使用Actor并发模型在复杂任务上进行协作。

在这篇博客文章中,我们将探讨并发的参与者模型、代理参与者的关键功能、它所带来的可能性,以及如何开始构建自己的代理树。我们希望激励LLM社区尝试新的自引用LLM架构。

【LLM】LangChain整合Gradio和LLM代理

编者按:这是Gradio的软件工程师Freddy Boulton的一篇客座博客文章。我们很高兴能分享这篇文章,因为它为生态系统带来了大量令人兴奋的新工具。代理在很大程度上是由他们所拥有的工具定义的,所以能够为他们配备所有这些gradio_tools对我们来说是非常令人兴奋的!

重要链接:

大型语言模型(LLM)给人留下了深刻的印象,但如果我们能赋予它们完成专门任务的技能,它们可以变得更加强大。

【LLM】RecAlign-社交媒体订阅源的智能内容过滤器

【编者按】这是田进的客串文章。我们强调这个应用程序,因为我们认为它是一个新颖的用例。具体而言,我们认为推荐系统在我们的日常生活中具有难以置信的影响力,关于LLM将如何影响这些系统,目前还没有大量的讨论。

我们都经历过使用推荐系统的痛苦:你注册了推特来跟上最新的人工智能研究,但点击一个有趣的模因会让你的时间线充满类似的分心。这些系统的作用是最大限度地提高所有者的利润,而不是你的福利。在这里,我们概述了我们以LangChain为动力的解决方案背后的基本原理,以解决其核心问题。

透明度和可配置性

在布莱恩·克里斯蒂安(Brian Christian)的《结盟问题》(the Alignment Problem)一书中,他分享了一则轶事:他的朋友正在从酒精成瘾中恢复,但推荐系统可能有点太了解他对酒精的热爱,并在他的推送中充斥着酒精广告。这一集生动地说明了一个反复出现的问题——推荐系统善于迎合我们今天的样子,但几乎没有给我们留下什么自由来决定我们想要成为什么样的人。目前的推荐系统缺乏透明度和可配置性。因此,我们很难识别推荐系统对我们的偏好做出的任何有问题的推断,更不用说修改它们了。