跳转到主要内容

标签(标签)

资源精选(342) Go开发(108) Go语言(103) Go(99) LLM(84) angular(83) 大语言模型(67) 人工智能(56) 前端开发(50) LangChain(43) golang(43) 机器学习(39) Go工程师(38) Go程序员(38) Go开发者(36) React(34) Go基础(29) Python(24) Vue(23) Web开发(20) 深度学习(20) Web技术(19) 精选资源(19) Java(19) ChatGTP(17) Cookie(16) android(16) 前端框架(13) JavaScript(13) Next.js(12) LLMOps(11) 聊天机器人(11) 安卓(11) ChatGPT(10) typescript(10) 资料精选(10) mlops(10) NLP(10) 第三方Cookie(9) Redwoodjs(9) RAG(9) Go语言中级开发(9) 自然语言处理(9) PostgreSQL(9) 区块链(9) 安全(9) 智能体(8) 全栈开发(8) OpenAI(8) Linux(8) AI(8) GraphQL(8) iOS(8) 数据科学(8) 软件架构(7) Go语言高级开发(7) AWS(7) C++(7) whisper(6) Prisma(6) 隐私保护(6) 提示工程(6) JSON(6) DevOps(6) 数据可视化(6) wasm(6) 计算机视觉(6) 算法(6) Rust(6) 微服务(6) 隐私沙盒(5) FedCM(5) 语音识别(5) Angular开发(5) 快速应用开发(5) 生成式AI(5) Agent(5) LLaMA(5) 低代码开发(5) Go测试(5) gorm(5) REST API(5) kafka(5) 推荐系统(5) WebAssembly(5) GameDev(5) 数据分析(5) CMS(5) CSS(5) machine-learning(5) 机器人(5) 游戏开发(5) Blockchain(5) Web安全(5) nextjs(5) Kotlin(5) 低代码平台(5) 机器学习资源(5) Go资源(5) Nodejs(5) PHP(5) Swift(5) RAG架构(4) devin(4) Blitz(4) javascript框架(4) Redwood(4) GDPR(4) 生成式人工智能(4) Angular16(4) Alpaca(4) 编程语言(4) SAML(4) JWT(4) JSON处理(4) Go并发(4) 移动开发(4) 移动应用(4) security(4) 隐私(4) spring-boot(4) 物联网(4) 网络安全(4) API(4) Ruby(4) 信息安全(4) flutter(4) 专家智能体(3) Chrome(3) CHIPS(3) 3PC(3) SSE(3) 人工智能软件工程师(3) LLM Agent(3) Remix(3) Ubuntu(3) GPT4All(3) 模型评估(3) 软件开发(3) 问答系统(3) 开发工具(3) 最佳实践(3) RxJS(3) SSR(3) Node.js(3) Dolly(3) 移动应用开发(3) 低代码(3) IAM(3) Web框架(3) CORS(3) 基准测试(3) Go语言数据库开发(3) Oauth2(3) 并发(3) 主题(3) Theme(3) earth(3) nginx(3) 软件工程(3) azure(3) keycloak(3) 生产力工具(3) gpt3(3) 工作流(3) C(3) jupyter(3) 认证(3) prometheus(3) GAN(3) Spring(3) 逆向工程(3) 应用安全(3) Docker(3) Django(3) R(3) .NET(3) 大数据(3) Hacking(3) 渗透测试(3) C++资源(3) Mac(3) 微信小程序(3) Python资源(3) JHipster(3) JDK(2) SQL(2) Apache(2) Hashicorp Vault(2) Spring Cloud Vault(2) Go语言Web开发(2) Go测试工程师(2) WebSocket(2) 容器化(2) AES(2) 加密(2) 输入验证(2) ORM(2) Fiber(2) Postgres(2) Gorilla Mux(2) Go数据库开发(2) 模块(2) 泛型(2) 指针(2) HTTP(2) PostgreSQL开发(2) Vault(2) K8s(2) Spring boot(2) R语言(2) 深度学习资源(2) 半监督学习(2) semi-supervised-learning(2) architecture(2) 普罗米修斯(2) 嵌入模型(2) productivity(2) 编码(2) Qt(2) 前端(2) Rust语言(2) NeRF(2) 神经辐射场(2) 元宇宙(2) CPP(2) spark(2) 流处理(2) Ionic(2) 人体姿势估计(2) human-pose-estimation(2) 视频处理(2) deep-learning(2) kotlin语言(2) kotlin开发(2) burp(2) Chatbot(2) npm(2) quantum(2) OCR(2) 游戏(2) game(2) 内容管理系统(2) MySQL(2) python-books(2) pentest(2) opengl(2) IDE(2) 漏洞赏金(2) Web(2) 知识图谱(2) PyTorch(2) 数据库(2) reverse-engineering(2) 数据工程(2) swift开发(2) rest(2) robotics(2) ios-animation(2) 知识蒸馏(2) 安卓开发(2) nestjs(2) solidity(2) 爬虫(2) 面试(2) 容器(2) C++精选(2) 人工智能资源(2) Machine Learning(2) 备忘单(2) 编程书籍(2) angular资源(2) 速查表(2) cheatsheets(2) SecOps(2) mlops资源(2) R资源(2) DDD(2) 架构设计模式(2) 量化(2) Hacking资源(2) 强化学习(2) flask(2) 设计(2) 性能(2) Sysadmin(2) 系统管理员(2) Java资源(2) 机器学习精选(2) android资源(2) android-UI(2) Mac资源(2) iOS资源(2) Vue资源(2) flutter资源(2) JavaScript精选(2) JavaScript资源(2) Rust开发(2) deeplearning(2) RAD(2)

【LLM】langchain 和 ChatGTP 4 agents

代理

代理通过涉及LLM来确定要遵循的操作序列,从而保持一定程度的自主权。

考虑下图,在收到请求后,代理会利用LLM来决定采取哪种操作。“操作”完成后,Agent将进入“观察”步骤。从观察步骤开始,代理人分享一个想法;如果没有达到最终答案,Agent会循环返回到另一个Action,以便更接近最终答案。

LangChain代理可以使用一系列操作。

下面的代码显示了LangChain代理回答一个极其模糊和复杂的问题的完整工作示例:

Who is regarded as the father of the iPhone and what is the square root of his year of birth?

代理人可以采取一些行动:

LLM数学,

以下是SerpApi网站的截图。SerpApi使得从搜索引擎结果中提取数据变得可行。

GPT-4(GPT-4–0314)。

【LLM】LangChain 代理和大型语言模型

目前在LLM上开发的方法正在迅速发展,即时工程在某种程度上被链接和代理的概念所吸收。

在最近的一篇文章中,我写到了即时工程的演变,以及即时工程是如何被吸收到更大的开发结构中的。

这些更大的开发结构允许:

  1. 更长、更复杂的用户交互
  2. 进程可以串行或并行运行
  3. 提示可以编程、共享、存储和模板化
  4. 链接是创建提示流或提示序列的概念。

对于现有流退出并且可以创建预先确定的会话或工作流的情况,Chaining工作得很好。

另一方面,在流量未知或高度不可预测的情况下,链接并不能很好地服务于场景。在这些情况下,预定的流程将不能很好地工作,并且需要一定程度的自主权。

 

什么是代理?

代理可以通过使用其可支配的一组工具或资源来接收查询。这些工具可以包括访问维基百科、网络搜索、数学库、LLM等。

【LLM】大型语言模型背景下的自主代理LangChain

随着大型语言模型(LLM)的实现在深度和广度上的扩展,出现了一些要求:

  1. 对LLM进行编程并创建可重复使用的提示的能力&将提示无缝地合并到更大的应用程序中。
  2. 创建链以对大型应用程序的LLM交互进行排序。
  3. 通过一个可以在工具范围内自主行动的代理,自动进行即兴的思维链提示。
  4. 创建可扩展的提示管道,可以从各种来源收集相关数据,所有这些都基于用户输入并构成提示;并将提示提交给LLM。

“任何足够先进的技术都与魔术难以区分。”

-阿瑟·C·克拉克

对于LLM相关的操作,显然需要自动化。目前,这种自动化是以所谓的代理的形式出现的。

提示链接是指执行一系列预先确定的动作。

【ChatBot】使用LangFlow构建LangChain智能体

基于LLM的智能体通过访问其可支配的LLM和工具来维护自主权

关于智能体的更多信息

LangChain智能体在一套可用工具的上下文中是自主的。现在,您可以通过使用LangFlow在GUI中构建LangChain智能体。

LangChain智能体在收到请求时会使用各种操作。采取行动后,智能体进入观察步骤,在那里他们分享一个想法。如果未达到最终答案,Agent会循环返回以选择不同的操作,以便更接近最终答案

智能体之所以有吸引力,是因为他们能够独立行动,不走预先确定的道路。

他们配备了一套工具,使他们能够响应这些工具范围内的任何请求。

这个执行管道使智能体能够独立地解决问题,可能需要多次迭代,直到达到所需的结果。

【LLM】利用特定领域知识库中的LLM

通过RAG致富:利用LLM的力量,使用检索增强生成与您的数据对话

问ChatGPT一个关于“马拉松”一词起源的问题,它会准确地告诉你希罗多德是如何描述费迪皮德斯从马拉松到雅典完成的42公里传奇长跑的,然后筋疲力尽。

但我祖母的食谱清单呢?当然,我可以把这些食谱数字化,没问题。但是,如果我想根据冰箱里的食材、我最喜欢的颜色和我一天的心情,就准备哪顿饭提出建议,该怎么办?

让我们看看这是否有可能在不因精疲力竭而崩溃的情况下实现。

LLM,达到你的极限…并超越它们

LLM是一种大型语言模型。OpenAI的GPT-4是一个例子,Meta的LLamA是另一个例子。我们在这里有意识地选择使用一般LLM术语来指代这些模型。请记住:这些模型中的每一个都是在一组庞大的(公开可用的)数据上进行训练的。

到目前为止,已经清楚地表明,这些LLM对通用语言有着有意义的理解,并且他们能够(重新)产生与训练数据中存在的信息相关的信息。这就是为什么像ChatGPT这样的生成工具在回答LLM在培训过程中遇到的主题问题方面表现惊人。

【ChatGPT】如何在你的电脑上离线运行类似LLM的ChatGPT

目前市场上有许多人工智能玩家,包括ChatGPT、Google Bard、Bing人工智能聊天等等。然而,所有这些都需要你有互联网连接才能与人工智能交互。如果你想在电脑上安装类似的大型语言模型(LLM)并在本地使用它怎么办?一个人工智能聊天机器人,你可以在没有互联网连接的情况下私下使用。好吧,通过斯坦福大学发布的新羊驼模型,你可以接近这个现实。是的,你可以离线在你的电脑上运行类似ChatGPT的语言模型。因此,请注意,让我们继续学习如何在没有互联网的情况下在本地使用LLM。

在没有互联网的情况下本地运行类似于LLM的ChatGPT(私有且安全)

在这篇文章中,我提到了如何在没有互联网的情况下在本地PC上运行类似ChatGPT的LLM的所有内容。您可以展开下表,详细了解步骤。

目录

【ChatGTP】斯坦福大学的Alpaca人工智能是什么?计算机科学家以不到600美元的价格创建的类似ChatGPT的模型

Alpaca是一个基于Meta的LLaMA系统的小型人工智能语言模型。出于安全和成本考虑,斯坦福大学的研究人员最近从互联网上删除了该演示。

大型语言模型包含数百亿或数百亿个参数,它们的访问通常仅限于有足够资源来训练和运行这些人工智能的公司。

快速增长的Meta决定与一些精选的研究人员分享其著名的LLaMA系统的代码。该公司希望找出语言模型产生有毒和虚假文本的原因。他们希望它能在研究人员不需要大规模硬件系统的情况下发挥作用。

于是,羊驼出生了。斯坦福大学的一组计算机科学家将LLaMA微调为一个名为Alpaca的新版本。这个新版本是一个开源的70亿参数模型。根据《新地图集》,它的建造成本不到600美元。

Alpaca已经调整了50000多个文本样本,使其信息更加准确

Alpaca的代码向公众发布,引起了几位开发人员的注意。他们成功地在树莓派电脑和Pixel 6智能手机上启动并运行了它。

斯坦福德的研究人员谈到了包括GPT-3.5、ChatGPT、Claude和Bing Chat在内的“指令遵循模型”是如何变得“越来越强大”的。该研究所的网站上写道: